[escepticos] RE ** Lenguajes JMienses(2)
Jose Ramón Brox
ambroxius en terra.es
Vie Sep 12 18:33:29 WEST 2008
>Y los registros, todo en un único lenguaje con sus 4
>símbolos.
Uy, se me había escapado un detalle:
Veréis, una teoría de primer orden consta de un conjunto de operaciones y un conjunto de
relaciones, además de contar con los conectivos ¬,->, el cuantificador V y la relación =.
Estaba yo eliminando el conjunto de operaciones (tomando el vacío) porque esto se puede
hacer siempre así, se puede demostrar que cualquier teoría de primer orden es equivalente
a otra sin operaciones. PERO entonces, si no recuerdo mal, hay que añadir una relación por
cada operación que se elimine. De esta manera, si queremos construir por ejemplo la teoría
de conjuntos ZF que comentaba antes necesitamos añadir además la operación entre conjuntos
'e' (pertenencia), y aunque la convirtamos en relación, seguirá estando ahí, así que
necesitaremos finalmente 5 símbolos.
Como curiosidad, comento que en lugar de coger una teoría como la de ZF que contiene un
modelo de la aritmética, podría haber cogido directamente la Teoría de la Aritmética, que
es lo que nos interesa, pero... ¡la teoría de primer orden de la aritmética necesita más
símbolos que la teoría de conjuntos! Concretamente, se necesita añadir a ¬,->,V,= las dos
operaciones '0' (la constante cero) y 'sucesor(n)' (la operación que devuelve n+1), así
que necesitaríamos 6 símbolos en lugar de 5... aunque parezca paradójico, esto tiene su
lógica, porque cuantas más restricciones pongamos a las operaciones y deducciones que
podemos hacer, más "pequeña" será la teoría.
Un saludo. Jose Brox
Más información sobre la lista de distribución Escepticos